A Novel MicroElectroMechanical System (MEMS) Device for Passive Sampling of Hydrophobic Compounds

Jeffery Steevens¹, Jacob Stanley¹, Allyson Harrison¹, Ashley Harmon¹, Korampally Venumadhav², Shubhra Gangopadhyay², Keshab Gangopadhyay³

¹U.S. Army Engineer Research and Development Center; ²University of Missouri; ³Nems/Mems Works, LLC.

NEMS/MEMS WORKS

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments is arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE MAY 2011		2. REPORT TYPE		3. DATES COVE 00-00-2011	red to 00-00-2011	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
A Novel MicroElectroMechanicalSystem (MEMS) Device for Passive				5b. GRANT NUMBER		
Sampling of Hydrophobic Compounds				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
			5f. WORK UNIT NUMBER			
Army Engineer Re	ZATION NAME(S) AND AD search and Develop rch Laboratory,PO L,61826-9005	ment Center,Constr	ruction	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
	OTES DIA Environment, I I in New Orleans, L	-	ustainability (E2	S2) Symposit	um & Exhibition	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 15	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Problem

- Contaminant assessment (chemical analysis) for emergency response, clean up, and NRDAR has significant room for improvement
 - Current approaches are costly
 - Need for measures of bioavailability
 - Spatial and temporal challenges
- Few technological improvements in chemical analysis since NEPA in 1969
 - Example: Using approaches developed in 1970's, it is estimated the Deepwater Horizon spill cost around \$20 million to measure "non-detects."

It is Time to Advance our Technology!

Technologies: Passive Samplers

 Passive samplers can be placed in situ to sorb contaminants; provide information about bioavailability

ESTCP project, Reible and Lotufo

- Samplers are removed, extracted for CoC, analyzed
 - For organics: solid phase micro extraction (SPME) fibers, semipermeable membrane devices (SPMD), polyoxymethylene (POM)
 - For metals: diffuse gradients in thin films (DGT)

Applications to Predict Bioaccumulation

SPME concentrations were predictive of tissue concentrations of PCBs in field-contaminated sediments and laboratory-spiked sediments You et al. 2006, EST, 40: 6348

SPME concentrations were predictive of tissue concentrations of chlorinated hydrocarbons
Leslie et al. 2002, ETC, 21:229

SPME fibers can be used to predict bioaccumulation

Application in Risk Assessment

- Anniston Alabama Site
- Using passive samplers to assess bioavailability of PCB and confirm bioassay results

Technologies: Passive Samplers

Uses:

- Measure bioavailability of CoC; direct measure of bioavailable fraction
- Use as a line of evidence (LOE) with in a weight of evidence approach
- Benefits: relatively easy and inexpensive; majority of cost is from chemical analysis
- Limitations: fragile, fouling, problems detecting compound on a small fiber

SPME fibers are an opportunistic technology; can we design a technology that intended for sampling contaminants?

Vision

- Develop a relatively inexpensive sampling device for a wide range of contaminants
- Could be used to sample or develop a detection system
- Immediate needs:
 - Develop a sorbant surface with a high affinity for contaminants
 - Robust and stable in environmental conditions
- Next steps:
 - 1. Detection
 - 2. Reporting

Sorbant Surface Material

- Sampler surface was fabricated using organosilicate nanoparticles
 3nm in size as the building blocks
- OSNP applied on a silicon substrate at different temperatures
 - 250-550°C

Polymethylsilsesquioxane (PMSSQ, ~ 3nm size), dispersed within polypropylene glycol (PPG).

Figure 3 a),b)Cross sectional SEM image of the NPO film c) AFM image of the NPO film surface

Cross section (SEM) and surface of OSNP (AFM)

The Sorbant Surface

- Surfaces applied to a silicon chip and characterized
 - -1 cm^2
 - Around 1.5 um thick

Sample	Thickness
NPO-5555-250°C-5min	1689 nm
NPO-5555-350°C-5min	1535 nm
NPO-5555-450°C-5min	1439 nm

Image of NPO film and ellipsometry results

SPME

• Length: 2.5 cm

• Diameter: 230 um

Surface area: 18 mm²

OSNP Surface

Length: 1 x 1 cm

• Thickness: 1.5 um

• Surface area: 1800 mm²

100X increase in sorption surface area!

Testing the Surfaces

Goal: Compare the sorbtion of SPME versus OSNP Chips

- Step 1: prepare a test media (PCB153)
 - PCB 153 in water
 - Concentration using a passive "dosing" system
 - SPMD tube with 0.5 g of glyceryl trioleate (triolien) + 10 mg PCB
 - Achieves water concentration of around 0.0059 + 0.002 ng/ml

SPMD with PCB in water and aeration

Testing the Surfaces

Exposure to surfaces

- Allow SPME and surfaces to equilbrate with water; 7 days with PCB 153 in water
- Remove and extract through procedure to dewater (methanol) then hexane
- Analyzed by GC-MS

Results: Sorption of PCB 153 on Samplers

Field Deployable Device

- Developed and testing a field deployable device
 - OSNP surface in a steel chamber with screen
 - Current device is 100% teflon with silica OSNP surface
- Being tested at Anniston Site to compare to SPME data; for the purpose of supporting bioaccumulation and toxicity assessment

Conclusions

Nano Porous Organosilicate (NPO) Films

- Develop samplers for in situ analysis of CoCs
- Technology
 - Initial development focused on sorbent materials with increased surface area
 - Deployable devices that are robust and recoverable
- Future research focuses on integrated detection methods within a MEMs platform
- Help: Always need help with field test sites

Acknowledgements

- Colleagues at NEMS/MEMS and University of Missouri for fabrication of surfaces
- Research was funded, in part, by the Dredging Operations Environmental Research Program (DOER, Todd Bridges, PM)

